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STABILIZATION OF CONVECTIVE FLOW IN A VERTICAL LAYER USING A PERMEABLE 

�9 PARTITION 

R. V. Birikh andR. N. Rudako~ UDC 536.25 

INTRODUCTION 

The control of the stability of convective motions is one of the problems of applied 
hydrodynamics, since a loss of stability leads to a lowering to the characteristics of a 
number of technical objects (thermodiffusion columns, vertical heat-insulating layers, etc.). 
Some methods for the stabilization of convective flows are discussed in [i]. 

In the present article an investigation is made of the effect of a thin permeable parti- 
tion, located at the interface between counterflows, on the stability of convective flow. A 
special characteristic of this means of stabilization is that a permeable partition, prevent- 
ing the development of secondary motions, in practice changes the profile of steady-state 
flow and processes of molcular transfer. The effect of a permeable partition on the stability 
of a horizontal layer of liquid heated from below and of isothermal fiow with a cubic velocity 
profile was investigated earlier in [2, 3]. 

Perm'. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 
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I. Statement of Problem 

We consider a vertical layer of liquid bounded by the solid surfaces x = • and having 
a temperature • As is well known, in the layer there arises a steady-state convective 
flow with a cubic profile of the velocity vo(x), which becomes unstable for a sufficiently 
great temperature difference. 

Let us investigate the effect on the stability of steady-state flow of a thin flat 
permeable partition located at the middle of the layer (x = O) parallel to the bounding 
planes. Since for x = 0 the profile of the velocity vo(x) has a node, such a location of 
the partition does not change the steady-state distribution of the velocity and the tempera- 
ture in the layer. 

The amplitudes of the flat normal perturbations of the stream function ~(x) and the 
temperature O(x) satisfy the equations [i] 

(i. i) 
k,0) +  kOr v~ = - 

where k and I are the wave number and the complex decrement of the perturbations; Gr and Pr 
are the Grashof and Prandtl numbers; and vo = (x -- x3)/6 and To = x are the profiles of the 
velocity and the temperature of the steady-state flow. As the units of distance, time, 
velocity, and temperature in (i.i), h, h2/~, gSOh2/v, and 0 (~ is the kinematic viscosity; 
g is the Acceleration of gravity, and ~ is the coefficient of thermal expansion are taken, 
respectively. 

The vanishing of the perturbations of the velocity and temperature at the boundaries 
of the layer leads to the conditions 

= T' =0 = 0 (x =_i). (1.2) 

With the statement of the boundary conditions at a thin permeable partition we postulate 
that, at the partition, the conditions of continuity are satisfied for the temperature, heat 
flux, and transverse component and that the longitudinal component of the velocity reverts 

to zero: 0~, a~ 
= . ~L ' 0-=~,,~ -YZ, ~-:~+, =~+=0 ( x = o ) ,  (1.3) 

where the subscripts "J' and "+" denote, respectively, the values of the function to the 
left and right of the partition. 

Due to the resistance of the partition to the flow of the liquid from one part of the 
layer to the other, there is the possibility 0 f a pressure drop at the partition. We assume 
that the rate of suction of the liquid through the partition is proportional to this pressure 
drop: 

v~ .= -- ~71 (p+ -- p_)  (x = 0), " 

where ~, is the resistance coefficient of the partition. Eliminating the pressure from this 
condition by means of the Navier--Stokes equation, for the stream function of the perturba- 
tions we obtain 

~$-- ~2 + k~T+ = 0 (x = 0). 
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Here ~ is the dimensionless resistance coefficient; as the unit of the change in the resis- 
tance we take q/h (n is the dynamic viscosity of the liquid). 

The boundary-value problem (1.1)-(1.4) determines the spectrum of the decrements of the 
perturbations of convective flow in a vertical layer with a permeable partition. 

Equations (i.i) were integrated from the boundaries of the layer to the partition by 
the Runge-Kutta method, with orthogonalization of three linearly independent solutions in 
each stage of the integration [4]. From the conditions of the joining of the solutions at 
the permeable partition (1.3) and (1.4), the spectrum of the decrement % = %(k, Gr, Pr, ~) 
was determined. 

2. Monotonic Instability 

In the absence of a partition, convective flow in a vertical layer is unstable with 
respect to perturbations of two types, i.e., monotonic (%i = O) and vibrational (%i # 0) [i]. 
Instability with respect to monotinic perturbations has a hydrodynamic character and leads 
to the formation of a system of steady-state eddies at the interface between the opposing 
flows. The minimal critical Grashof number, determining the limit of instability with re- 
spect to monotonic perturbations, depends only slightly on the Prandtl number, for small 
value of Pr, this type of instability is the main one. 

A thin permeable partition located at the middle of the layer stabilizes the flow with 
respect to monotonic perturbations, since, at the partition, the longitudinal component of 
the velocity reverts to zero and the resistance of the partition hinders the development of 
closed flows. Calculations of the critical Grashof numbers were made for Pr = 0.01. 

Figure 1 shows the dependence of the minimal critical Grashof number Grm and the wave 
number k m of the most dangerous perturbation on the resistance of the partition. A calcula- 
tion shows that, in the case of an absolutely permeable partition (~ = 0), Gr m = 1680, which 
is more than three times as great as the critical Grashof number without a partition. With 
an increase in the resistance of the partition, there is an almost linear rise in the value 
of Gr m. With arise in the value of ~, the wave number of the critical perturbations de- 
creases monotonically. 

3. Vibrational Instability 

As is shown in [5], convective flow in a vertical layer, starting with Pr, = 11.4, is 
unstable with respect to perturbations of the type of traveling waves. Let us examine the 
effect of a permeable partition on instability of this kind. 

Figure 2 gives the results of a calculation of Gr m (along the axis of ordinates there 
is plotted the value of A = GrPr z/2, having an asymptote with large values of Pr) and the 
corresponding wave number k m of the perturbations [curves 1 and 2) ~ = O; curves 3, 4) ~ = 
i000; curves 5 and 6) without a partition], as well as of the phase velocity c = li/kGr 
(curve 7). 

For any given resistance of the partition, vibrational instability appears at Pr, = 8, 
i.e., in this region of Prandtl numbers there is destabilization of the steady-state flow. 
An absolutely permeable partition (~ = O) has a destabilizing effect on convective flow in 
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in the whole region of Prandtl numbers; with a rise in Pr, this effect decreases. A parti- 
tion with a large resistance (~ = i000), starting from Pr = 11.5, stabilizes the flow 
strongly. 

The critical wave numbers of vibrational perturbations and their phase velocity, as can 
be seen in Fig. 2, rise rapidly with an increase in the Prandtl number and are stabilized 
in the region of large values of Pr. The value of the phase velocity of the critical per- 
turbations is practically independent of the resistance of the partition. 

In the flow under consideration, with a permeable partition, as for other kinds of con- 
vective motion in a layer of liquid, the limit of stability with respect to vibrational per- 
turbations,is lowered with a rise in the Prandtl number, and for large values of Pr the law 

- 1 / 2  Grm ~ Pr holds. The asymptotic behavior of the minimal Grashof number as Pr § ~ was 
invew by the method of expansion of the solution with respect to the small parameter 
Pr -I/2 [6]. The results of the calculations are given in Fig. 3. As can be seen, with an 
increase in the resistance of the partition, the stability of the flow increases. For ~ > 
I00, Gr m = 268 (~/Pr) I/2. Such a dependence of the minimal Grashof number on the resistance 
shows that an absolutely impermeable partition lowers this type of instability. With a rise 
in the resistance, the wave number of the most dangerous perturbation decreases monotonically 
while its phase velocity remains practically unchanged (c = 0.0678). 
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